Paleophysiology and end-Permian mass extinction
نویسندگان
چکیده
Physiological research aimed at understanding current global change provides a basis for evaluating selective survivorship associated with Permo-Triassic mass extinction. Comparative physiology links paleontological and paleoenvironmental observations, supporting the hypothesis that an end-Permian trigger, most likely Siberian Trap volcanism, touched off a set of physically-linked perturbations that acted synergistically to disrupt the metabolisms of latest Permian organisms. Global warming, anoxia, and toxic sulfide probably all contributed to end-Permian mass mortality, but hypercapnia (physiological effects of elevated PCO2) best accounts for the selective survival of marine invertebrates. Paleophysiological perspectives further suggest that persistent or recurring hypercapnia/global warmth also played a principal role in delayed Triassic recovery. More generally, physiology provides an important way of paleobiological knowing in the age of Earth system science. © 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Current perspectives on the Permian–Triassic boundary and end-Permian mass extinction: Preface
The end-Permian mass extinction is now robustly dated at 252.6 ± 0.2 Ma (U–Pb) and the Permian–Triassic (P–T) GSSP level is dated by interpolation at 252.5 Ma. An isotopic geochronological timescale for the Late Permian–Early Triassic, based on recent accurate high-precision U–Pb single zircon dating of volcanic ashes, together with calibrated conodont zonation schemes, is presented. The durati...
متن کاملProlonged Permian Triassic ecological crisis recorded by molluscan dominance in Late Permian offshore assemblages.
The end-Permian mass extinction was the largest biotic crisis in the history of animal life, eliminating as many as 95% of all species and dramatically altering the ecological structure of marine communities. Although the causes of this pronounced ecosystem shift have been widely debated, the broad consensus based on inferences from global taxonomic diversity patterns suggests that the shift fr...
متن کاملModeling the Role of Primary Productivity Disruption in End- Permian Extinctions, Karoo Basin, South Africa
The end-Permian mass extinction is well-known as the most severe mass extinction of the Phanerozoic. Terrestrial communities appear to have been strongly affected by the event, but the cause of the extinction remains enigmatic. Here we explore whether primary producer disruption (e.g., extinction of terrestrial plants) could have led to a collapse of end-Permian terrestrial ecosystems, using mo...
متن کاملDelayed recovery of non-marine tetrapods after the end-Permian mass extinction tracks global carbon cycle
During the end-Permian mass extinction, marine ecosystems suffered a major drop in diversity, which was maintained throughout the Early Triassic until delayed recovery during the Middle Triassic. This depressed diversity in the Early Triassic correlates with multiple major perturbations to the global carbon cycle, interpreted as either intrinsic ecosystem or external palaeoenvironmental effects...
متن کاملThe end-Permian extinction
The end Permian extinction was the greatest mass extinction of the Phanerozoic Era. It impacted marine and terrestrial plants and animals. Although the rate of the extinction has been controversial in the past, recent evidence suggests that the extinction progressed in two pulses approximately 5-12 million years apart. The second pulse of the extinction is marked by a sharp temperature spike an...
متن کامل